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It is unlucky the word “Monoid” is so awkward, as it 
represents a concept that is both ubiquitous and 
actually simple.  
 
Monoids are all about *composability*. It's about 
having abstractions in the small that compose 
infinitely in the large. 
 
You are already familiar with many cases of typical 
monoidal composeablity, such as everything 
*group-by*, or everything *reduce*. What I want to 
emphasize is that Monoids happen to be frequent 
occurrences in business domains, and that you 
should spot them and exploit them. 
 
Since I’ve first talked about my enthusiasm for 
monoids at conferences around the world, I’ve 
received multiple positive feedbacks of concrete 
situations where monoids helped teams redesign 
complicated parts of their domain models into 
something much simpler. And they would then say 
that the new design is “more elegant”, with a smile. 
 
Just one important warning: please don’t confuse 
monoids with monads. Monoids are much easier to 
understand than monads. For the rest of the text, 
we will keep monads out of scope, to focus solely 
on monoids and their friends. 

What are Monoids? 

Monoids come from a part of mathematics called 
abstract algebra. It's totally intimidating, but it really 
doesn't have to, at least not for monoids, which are 
creatures so simple that kids pretty much master 
them by age of 2 (without knowing of course) 
 
So what are monoids? A monoid is a mathematical 
structure. First we start with a simple set. A set is 
just a criterion to decide if elements belong or not to 
the set. Yes it’s a bit circular a definition but you get 
the idea. 
 

I usually explain monoids through glasses of beer, 
but here I will use plumbery pipes. For example, 
let's define a set of pipes this way: 
 
    ”The set of pipes with a hole this size” 

 
Given this definition of our set, now we can test if 
various elements belong to it or not.  

 
On top of this set, we define an operation, that we 
can call "combine",  “append”, "merge", or "add", 
that takes two elements and combines  them. 1

 
One funny thing we notice now is that given two 
elements from the set, the result is always... in the 
set too! That sounds like nothing, but that's what 
Closure of Operations is all about: the set is closed 
under this operation. It matters. We have a little 
system that's all about itself, always. That's cool. 
 
But there's more to it. If you first combine the first 
two pipes together, then combine the result with the 
third pipe, or if you first combine the last two pipes 
then you combine the first pipe with it, then you end 
up with the exact same result. We're not talking 
about changing the ordering of the pipes, just the 
ordering of combining them. It's like putting the 
parenthesis anywhere doesn't change the result. 
This is called Associativity, and is important. 

1 In the world of pipes it could be named ‘weld”. 



 
 
By the way changing the ordering of the pipes 
would be called Commutativity, and we have it if 
they all are identical, but this property is not as 
frequent. 
 
So we have a set of elements, an operation with 
results that are all in the set, and that is associative. 
To really be a monoid, you need one more thing: 
you have to define one more kind of pipe, that is 
invisible, so I can't show it to you. But believe me, it 
exists, because as a developer I can create the 
system the way I prefer it to be. This special 
element belongs to the set: it has a hole the right 
size. So whenever I combine this special element 
with any other, the result is just the other element 
itself. It doesn't change anything. That's why we call 
it the neutral, or identity element. 
 
And voilà! A set, an operation, closure of this 
operation, associativity, and neutral element: that's 
the formal definition of a monoid! 
 
Ok at this point, you are perhaps like: 
 

 
 
But stay with me, we'll see how this really closely 
relates to your daily job. 

So what? 

So when I started explaining monoids to people I 
also explained it to my wife. She instantly got it, but 
then asked: what for? 
 
So I was the one wondering for a few seconds. Why 
does it matter to me? I believe it's all about dealing 
with encapsulating some diversity inside the 
structure. 
 
 
You probably know the old joke in programming: 
 

    There are only three numbers in 
programming: 0, 1, and MANY. 

 
That's so true. But this also illustrates a very 
common kind of diversity we face all the time: the 
singular, the plural, and the absence. Monoids 
naturally represent the singular, with the elements 
of the set. It also deals with the plural, thanks to the 
combine operation that can take a plural and turn it 
back into an element as usual. And the neutral 
element takes care of the absence case, and it also 
belongs to the set. So monoids encapsulate this 
diversity inside their structure, so that from the 
outside you don't have to care about it. That's a 
great idea to fight the battle against complexity. 
 

 
In the wild real life problems that we have, if we're 
not careful, we have to deal with various concepts, 
each potentially having their own diversity of being 
either singular, plural, or nothing. In the worst case, 
you'd end up with the cartesian product of all cases. 
It doesn't scale well. 

 
 



Once you encapsulate this diversity inside a monoid 
for each concept, then you only have one case for 
each, and together it remains one single case. 

 
If you apply that often, then you can deal with high 
levels of complexity with ease. Monoids help scale 
in complexity. In fact, if you're comfortable in 
object-oriented programming, you may recognize 
something familiar you're doing already: for a given 
interface, I often find myself using the Composite 
pattern to deal with the plural, and the NullObject 
pattern to deal with the absence. These patterns 
help deal with singular, plural and absence 
consistently, so that the caller code doesn't even 
have to know. That's similar in purpose. 

 

Examples Please! 

You already know a lot of monoids in your 
programming language: 
 

● Integer with addition: Integers are closed 
under addition: int + int = int. They're 
associative: (3+5)+2=3+(5+2), and their 
neutral element is 0, since any integer plus 
zero gives the same integer. 

● Lists with list append operation: List + List 
= List is closed under this appending, 
which is associative: (a )+(b ,c)=(a , b)+(c). 
And the empty list is the neutral element 
here. 

● A special case of lists, Strings with 
concatenation: "hello" + "world" is a string 
too. It's associative: "cy"+"ri"+"lle", and the 
neutral element is the empty string. 

 
Note that integers can also form a monoid with the 
multiplication operation, in which case the neutral 
element would be 1. But natural integers with 
subtraction do not form a monoid, because 3 - 5 is 
not in the set of natural integers but it would in the 
set of integers. 

 
All this is not difficult. Still, such a simple thing is a 
key to very complex behaviors. It's also the key to 
infinite scalability of space (think Hadoop), and the 
key to infinite incremental scalability (think Storm). 
There's one joke in Big Data circles:  
 
     If you're doing Big Data and you don't know what 
an abelian group is, then you do it wrong! 
 
It's all about *composability*, which is highly 
desirable pretty much everywhere. . 

Implementing monoids in 
your usual programming 
language 

So how do we implement monoids in plan Java 
code?  
 

Monoids are typical Functional 
Programming; In Functional Programming 
everything is a value; Therefore: Monoids 
are values!  

 
That's a solid proof that monoid are value objects. 
Seriously though they do have to be value objects, 
i.e. immutable and equality by value. But monoid 
objects don't have to be anemic, with just data. 
They are supposed to have behavior, and in 
particular behavior that compose, like lengths, 
where we want to be able to write: "18 m + 16 m = 
34 m". The corresponding code for this method 
would be: 
 
public Length add(Length other){ 

   return new Length( 

      value + other.value); 

} 

 
This add() method returns a new instance, as value 
objects should do. It must not perform any 
side-effect, as advocated by the DDD 
"Side-Effect-Free Functions" pattern. Immutability 
and Side-Effect-Free Functions together are good 
taste! That should be your default style of 
programming, unless you really have to do 
otherwise. 
 
In addition, being immutable and side-effect-free 
means that testing is a no-brainer: just pass data in, 



and assert the result out. Nothing else can happen 
to make it more complicated. 

Monoids in domain 
modeling 

Domain-specific lists, like a mailing list defined as a 
list of emails addresses, can form a monoid at least 
twice, once with the union operation, and a second 
time with the intersection operation. The neutral 
element would be nobody() in the former case, and 
everybody() in the latter case. Note the naming of 
the neutral elements that is domain-specific, instead 
of more generic names like *empty* or *all*. But we 
could go further and rename the intersection() 
operation into a word like *overlapping* is this was 
the way the domain experts talked about this 
problem. 

Money and Quantity 

Let's start with the good old Money analysis pattern, 
from Martin Fowler: (EUR, 25) + (EUR, 30) = (EUR, 
55). And in case the currencies don't match, we 
would throw an exception in the add method. Note 
that throwing exception indeed break perfect 
composability, but in practice we could deal with 
some, as long as they only reveal coding mistakes. 
 
Our money class would be defined in UML like this: 

 
 
The Money pattern is indeed a special case of the 
more general Quantity analysis pattern: 
"Representing dimensioned values with both their 
amount and their unit" (Fowler). 
 

Cashflows and sequences of 
cashflows  
 
Now that we have a money amount, we can make it 
into a cashflow, by adding a date:  
 

   (EUR, 25, TODAY)  
+ (EUR, 30, TODAY)  
= (EUR, 55, TODAY) 

 
And again we could throw an exception if the dates 
don't match. 

 
Looking at the UML class diagram, it's striking that 
the class only refers to its own type, or primitives (in 
the constructor, not shown here). Methods take 
Cashflow as parameter, and return Cashflow, and 
nothing else. 
 
This is what Closure of Operation means in code. 
This type is egotistic, it only talks about itself. That's 
a desirable quality for code, as advocated in the 
DDD book, and it's one of the mandatory properties 
of a monoid.  
 
But why stop there? We typically deal with many 
cashflows that go together, and we also think of 
them as stuff we can add:  



 
So once again, we want to be able to write the code 
the exact same way:  
 

   Cashflow Sequence  
+ Cashflow Sequence  
= Cashflow Sequence. 

 
At this point you get the picture: monoid are all 
about what we could call an arithmetics of objects. 
 
Note that the addition operation in the Cashflow 
Sequences above is in basically the list 
concatenation (e.g. addAll() in Java), where 
cashflows on the same date and on the same 
currency are then added together using the addition 
operation of the cashflow themselves. 

Ranges 

A range of numbers or a range of dates can be 
seen as a monoid, for example with the 
compact-union operation, and the empty range as 
the neutral element: 
 
    [1, 3] Union [2, 4] = [1, 4] // compact union 
    [1, 3] Union ][ = [1, 3] // neutral element 
 
By defining the operation of “compact” union: 
 

public final class Range{ 

   private final int min; 

   private final int max; 

   public final static EMPTY  

= new Range(); 

 

   public Range union(Range other){ 

       return new Range( 

          min(this.min, other.min), 

          max(this.max,other.max)); 

   } 

} 

 
Note that the internal implementation can absolutely 
delegate the work to some off-the-shelf 
implementation, e.g. some well-known, well-tested 
open-source library. 

Predicates 
Predicates are natural monoids, with logical AND 
and the ALWAYS_TRUE predicate, or with logical 
OR and the ALWAYS_FALSE predicate. 

Grants 

But even unexpected stuff like read/write/execute 
grants can form a monoid with some merge 
operation defined for example as "the most secure 
wins":: 
 

    r merge w = r 
    w merge x = w  

 
The implementation could be an enum and perform 
a MIN on the internal ordering of each value. 
 
public final enum Grant{ 

   R, W, X; 

   public Grant merge(Grant other){ 

       return min(this.ordinal(),  

                  other.ordinal()); 

   } 

} 

Of course it’s up to your domain expert to decide 
which exact behavior is expected here, and how the 
operation should be named. 



Monoids of monoids are 
monoids 

Nesting monoids can easily lead to monoids. For 
example in many systems you have configuration 
maps for the settings of an application. You often 
have a default hardcoded one, then by order of 
precedence one by department, then another by 
desk, and ultimately one by user. This leads 
naturally to a monoid form: 
 

MonoidMap + MonoidMap = MonoidMap 
 
One simple way to do that is just combine the maps 
with the LAST ONE WINS policy: 
 
public MonoidMap append( 

              MonoidMap other) { 

  Map<String, Object> result  

      = new HashMap<>(this.map); 

  result.putAll(other.map); 
  return new MonoidMap(result); 

} 

 
But we can go further if all values are also monoids, 
and let each value make its own monoidal magic:  

 
 
In our example, colors are combined by an 
OVERWRITE operation (last value wins), Enable 
values are combined by a logical OR operation, 
while Timeout values are combined by an integer 
MIN operation. You can see here that all the value 
are monoids by themselves with these operations. 
By defining the map-level combine operation (here 
noted +) by delegating to the monoid operation of 
each value, in parallel for each key, then we also 
have the configuration maps as monoids. Their 
neutral element could be either an empty map, or a 

map with all the neutral elements of each type of 
value. 
 
public NestedMonoidMap append( 

             NestedMonoidMap other) { 

  Map<String, Monoid<?>> result  

        = new HashMap<>(map); 

  for (String key:other.map.keySet()){ 

   Monoid value = map.get(key); 

   Monoid value2 = other.map.get(key); 

   result.put(key, value == null ? 

     value2 : 

    (Monoid)value.append(value2)); 
  } 

  return new NestedMonoidMap(result); 

} 

 
Of course in this example, each value would have 
to be itself a monoid, with its own specific way to 
append or merge.  
 
What I like in this example is also that it shows that 
value objects don't have to be small-ish. We can 
have huge objects trees as values and as monoids, 
and it works well. And don't obsess too much about 
the memory allocation here, most of the values are 
reused many times, really. 

Non Linear  

But not everything is that easy to model as 
monoids. For example, if you have to deal with 
partial averages and want to compose them into a 
bigger average, you cannot write: Average + 
Average as it would just be WRONG: 
 
 Average + Average = WRONG 
 
Average calculation just doesn't compose at all. 
This makes my panda sad. 
 
But if you really want to make it into a monoid, then 
you can do it! The usual trick is to go back to the 
intermediate calculation, in which you can find some 
composable intermediate sub-calculations: 
 
 avg = sum / count 
 
And it turns out that put together as a tupple, it 
composes quite well, using a tuple-level addition 
defined as the addition of each term:  
 

(sum, count) + (sum, count) = (sum, count) 
 



Which internally becomes: 
  (sum_0, count_0)  
+ (sum_1, count_1)  
= (sum_0 + sum_1, count_0 + count_1) 

 
So you can combine tuples at large scale, across 
many nodes for example, and then when you get 
the final result as a tuple, then you just finish the 
work by taking the average out of it by actually 
doing the division sum/count.  
 
public class Average { 

  private final int count; 

  private final int sum; 

  public static final Average NEUTRAL  

               = new Average(0, 0); 

 

  public static final  

      Average of(int... values) { 

    return new Average( 

          values.length, 

          stream(values).sum()); 

  } 

 

  private Average(int count, int sum){ 

    this.count = count; 

    this.sum = sum; 

  } 

 

  public double average() { 

    return (double) sum / count; 

  } 

 

  public int count() { 

    return count; 

  } 

 

  public Average add(Average other) { 

    return new Average( 

       count + other.count,  
       sum + other.sum); 

  } 

  …// hashcode, equals, toString 

} 

 
And if you need the standard deviation, you can do 
the same trick, just by adding the sum of the values 
at the power of two (sum2):  
 

   (sum2, sum, count)  
+ (sum2, sum, count)  
= (sum2, sum, count),  

 
Which internally becomes: 

  (sum2_0, sum_0, count_0)  
+ (sum2_1, sum_1, count_1)  
= (sum2_0,  + sum2_1,  
    sum_0 + sum_1,  
    count_0 + count_1) 

 
as there's a formula to get the standard deviation 
out of that: 
 

“the standard deviation is equal to the 
square root of the difference between the 
average of the squares of the values and 
the square of the average value.” 

 
STD = square root[1/N.Sum(x^2) - (1/N.Sum(x))^2] 
 
Monoids don’t have to use addition, here’s an 
example of a monoid of ratios with the operation of 
multiplication: 
 
public class Ratio { 

  private final int numerator; 

  private final int denumerator; 

  public static final Ratio NEUTRAL = 

                    new Ratio(1, 1); 

 

  public Ratio( 

      int numerator, int denumerator){ 

    this.numerator = numerator; 

    this.denumerator = denumerator; 

  } 

 

  public double ratio() { 

    return numerator / denumerator; 

  } 

  

  public Ratio multiply(Ratio other) { 

    return new Ratio( 

     numerator * other.numerator, 
     denumerator * other.denumerator); 
  } 

  ...// hashcode, equals, toString 

} 

 
Over the years I've grown the confidence that 
anything can be made into a monoid, with these 
kinds of tricks. Histograms with fixed buckets 
naturally combine, bucket by bucket: 



 
The corresponding code for the add operation adds 
the number of elements in each respective bucket: 
public Histogram add(Histogram other) 

{ 

  if (buckets.length != 

      other.buckets.length) { 

   throw new IllegalArgumentException( 

    "Histograms must have same size"); 

  } 

  int[] bins = new 

int[buckets.length]; 

  for  

    (int i = 0; i < bins.length; i++){ 

    bins[i]  
    = buckets[i] + other.buckets[i]; 

  } 

  return new Histogram(bins); 

} 

 
If histograms have heterogeneous buckets, they 
can be made to compose using approximations (eg 
curves like splines) that compose. 
 
Moving average don't compose unless you keep all 
their respective memories and combine them just 
like the histograms. But by looking into 
small-memory microcontroller litterature you can 
find alternative ways to calculate them that 
compose with much less memory footprint, e.g. 
using just a couple of registers.  
 
Note that one potential impediment to making an 
arbitrary calculation into a monoid could be 
concerns such as being ill-conditioned, or value 
overflow, but I never had this issue myself. 

Monoids And Friends: 
Applications Notes 

As shown with the pipes, monoids are ubiquitous in 
our daily lives, and are part of our universal 
language to describe things, even without ignoring 
their abstract definition. Everybody knows how to 

stack glasses or chairs. My kids know how to 
combine wooden trains together to create longer 
trains.  

Declarative style 

This ability to compose stuff is part of our mental 
models, and as such can be part of our Ubiquitous 
Language in the DDD sense. For example in the 
hotel booking domain, we could say that a booking 
from January 21 to 23 combined to another booking 
in the same hotel from January 23 to 24 is 
equivalent to one single booking from January 21 to 
24: 
 
    Booking [21, 21]  
    + Booking [23, 24]  
    = Booking [21, 24] 
 
Which we could sketch like this, as ranges with 
some union operation: 

 
 
The code for the operation would just take the min 
and max of both dates and check they share one 
date. It would probably be a commutative operation 
in this case. And in programming languages with 
operator overloading like Scala, we could really 
replace expressions like a.add(b) by a + b 
 
Using monoids helps having a more declarative 
style in our code, another point that is advocated for 
by Eric Evans in the DDD book.  
 
Let's consider another example of price plans of 
mobile phones. There's a potential fixed monthly 
fee, a potential annual fee for things like insurance, 
some potential one-off fees for extra options that 
you pay when you activate it etc. For a given price 
plan for a given customer, you have to select the 
cash flows sequences that match, then add them to 
create the invoice. We could draw the domain 
problem like this: 



 
Unfortunately then developers tend to implement 
this kind of problem with an accumulation of special 
cases: 
 
// without monoids  

PaymentsFees(...) 

PaymentsFeesWithOptions(...) 

PaymentsFeesWithInsuranceAndOptions(.) 

PaymentsFeesWithInsurance(...) 

NoFeesButInsurance(...) 

... 

 
Whereas once you recognize that the cash flow 
sequences form a monoid, then you can just 
implement exactly the way you think about it: 
 
// basic generators 

monthlyFee(...) : Payments 

options(...) : Payments 

insurance(...) : Payments 

 

// your custom code to combine 

Payments invoice = monthlyFee 

    .add(options) 

    .add(insurance); 

 
 
One major benefit is that the cognitive load is 
minimal. You just have to learn the type and its 
combine method, and that's it. And yet it gives you 
an infinite number of possibilities to combine them 
into exactly what you want.  

Domain-Specific, within one 
Bounded Context 

You may be tempted to reuse monoidal value 
objects across various parts of a larger system, but 
I would not advocate that. Even something as 

simple a Money class can be specific to some 
sub-domain.  
 
For example in pretrade you would have a Money 
optimized for speed and expressed as an integer, 
as a multiple of the trading lot size, whereas for 
accounting you’d use a BigDecimal-based 
implementation that would ensure the expected 
accuracy even after summing many amounts and 
even after many foreign exchange conversions.  
 
Another example this time with cashflows: in a 
tax-related domain, you can’t just add an 
reimbursement cashflow to an interest cashflow, as 
they are treated very differently by the tax 
institution, whereas in an investment domain you 
would just add them all together without any 
constraint. For more on that point, I suggest 
Mathias Verraes blog post where he notes: 
 

...dealing with money is too critical to be 
regarded as a Generic Subdomain. 
Different projects have different needs and 
expectations of how money will be 
handled. If money matters, you need to 
build a model that fits your specific 
problem space... 

Monoid, multiple times.  
It’s not uncommon for some domain concept to be a 
monoid more than once, for example once with 
addition and the neutral element ZERO, and a 
second time with multiplication and the neutral 
element ONE. As long as it makes enough sense 
from a domain perspective, then it’s desirable to 
have more structures (being a monoid multiple 
times) or to be a stronger structure (see other 
mathematical structures later in this document). 

Internal implementation 
hackery 

Also note that neutral elements may call for some 
internal magical hacks for their implementation. You 
may rely on a magic value like -1 or 
Integer.MIN-VALUE, or on some special 
combination of magic values. You may think it’s bad 
code, and it would be if it was meant to be seen or 
used regularly. However as long as it’s well-tested 
(or built from the tests) and as long as it’s totally 
invisible for the caller of the class, then it will only 

http://verraes.net/2016/02/type-safety-and-money/


cause harm when you are changing this class itself, 
which is probably acceptable. A monoid typically is 
not subject to a lot of changes, it’s a finely tuned 
and highly consistent system that just works 
perfectly, thanks to its mathematical ground. 

Established Formalisms, for 
Living Documentation 
 
Monoids are one of the most frequent algebraic 
structures we can observe in the world of business 
domains. But other structures like groups (monoids 
with inverse elements), space vectors (addition with 
multiplication by a real number coefficient) and 
cyclic groups (think modulo) are also common. You 
can learn more about all these structures on 
Wikipedia and see whether they apply for your 
practical domain problems. 
 
But the fact that these structures are totally 
described in the maths literature is important. It 
means that these solutions are established 
formalisms, which successfully passed the test of 
time. The DDD book actually advocates drawing on 
Established Formalisms for this reason. 
  
Another reason is that you don't have to document 
them yourself. Just refer to the reference with a link 
and you're done. That's very much Living 
Documentation! 
 
So if we want to document the fact that we 
implement a monoid, we could create a specific 
annotation @Monoid(String neutralElement), that 
could then be used to annotate a combine method 
on some class: 

 
Alternatively since Java 8 you could define a 
class-level annotation  
 

   @Monoid(neutralElement="emptyList",  

           operation="union") 

 
Since a class can be a monoid several times, you 
would also need to mark the custom annotation as 
@Repeatable and define its container annotation 
Monoids, so that you can then annotate a class 
multiple times: 
 
  @Monoid(neutralElement="one", 

          operation="multiply") 

  @Monoid(neutralElement="zero", 

          operation="add") 

Self-Explaining Values 
Now suppose you want a complete audit on all the 
calculations, from the initial inputs to the result. 
Without monoids you'll have a bad time going 
through all the calculations to insert logs at each 
step, while making the code unreadable and with 
plenty of side-effects. 
 
But if the calculations are done on a type like a 
monoid, with custom operations, then you could just 
enrich the operations with internal traceability audit 
trail: 
 
public static class Ratio { 

 
private final int numerator; 

private final int denumerator; 

private final String trace; 
 
public Ratio multiply(Ratio other) { 

  return new Ratio( 

     numerator * other.numerator, 

     denumerator * other.denumerator, 

     "(" + asString() + ")*("  

         + other.asString() + ")"); 

} 

 

public String asString() { 

 return numerator + "/" + denumerator; 

} 

 
With this built-in traceability, we can ask for the 
explanation of the calculation afterwards: 
 



new Ratio(1, 3) 

   .multiply(new Ratio(5, 2)) 

   .trace() 

// trace: “(1/3)*(5/2)“ 

 
One question with the trace is to decide whether or 
not to use for the object equality. For example, is 
(5/6, “”) really equal to (“⅚, “(1/3)*(5/2)”)? One 
way is to ignore the trace in the main object 
equals(), and to create another strictEquals() if 
necessary that uses it. 

Encapsulated Error Handling  

Many calculations can fail. We cannot divide a 
number by the number zero. We cannot subtract 7 
from 5 in the set of natural integers. In software, 
error handling is an important source of accidental 
complexity, like in defensive programming, with 
checks statements bloating every other line of code. 
 
The traditional way to go to simplify is to throw 
exceptions, however it defeats the purpose or 
composability since it breaks the control flow. In 
practice I observe that throwing is acceptable for 
errors that are nothing but coding errors; once fixed 
they should never happen anymore, so for practical 
matters we have apparent composability. 
 
An alternative to exceptions that can really happen 
at runtime is to make the monoidal operation a 
*total function*. A total function is a function that 
accepts any possible value for all its parameters, 
and therefore always returns a result for them. In 
practice the trick is to introduce a special value that 
represents the error case. For example in the case 
if division by zero, Java has introduced the special 
value NaN, for Not-a-Number. 
 
Because a monoid has to follow the Closure of 
operation, it follows that the special extra value has 
to be part of the set of legal values for the monoid, 
not just as output but also as input. Usually the 
implementation of the operation would just bypass 
the actual operation and immediately return NaN 
when you get a NaN as a parameter: you propagate 
the failure, but in a composable fashion.  
 
This idea was proposed by Ward Cunningham as 
the Whole Object pattern from his CHECKS 
patterns. Java Optional, and monads in functional 
programming languages, like the Maybe monad and 
its two values Some or None, are similar 
mechanisms to achieve this invisible propagation of 

failure. This is a property of an Absorbing Element 
like NaN: a + NaN = a  
 
In the case of ranges with the union operation, you 
may want to introduce a special element 
NotARange to represent the error case of the union 
of disjoint ranges: 

 
In the case of natural integers and subtraction, the 
way to make the function total is to extend the set 
with negative integers (which at the same time will 
promote the monoid into a group with inverses) The 
way to make the square root function (nothing to do 
with a monoid) a total function would be to extend 
the set from real numbers to the superset of 
complex numbers. 
 

How to turn anything into a 
monoid 

This idea of extending the initial set with additional 
special values is a common trick for monoids, and 
not just for error handling. It’s also useful to 
artificially turn any set into one that is closed under 
a given operation.  
 
Given a function with some input I and output O that 
are not of the same type, we can always turn it into 
a monoid by introducing the artificial type that is the 
tuple of both types: (I, O). 
 
For example, given a function that gets a String and 
returns an integer, we can introduce the type 
Something (String, int), so that we now have a 
function that gets a Something and also returns a 
Something.  

Testing Monoids 
As mentioned already, monoids are easy to test as 
they’re immutable and have no side-effect. Given 
the same inputs, the combine operation will always 
return the same result. And with just one single 
function, the testing surface of a Monoid is minimal.  
 

https://en.wikipedia.org/wiki/Absorbing_element
https://en.wikipedia.org/wiki/Absorbing_element


Still monoids should be tested on all their important 
properties, like being associative, and on some 
random values, with an emphasis on the neutral 
elements, any artificial value like NaN or Special 
Cases, and when approaching the limits of the set 
(MAX_VALUE...). 
 
Since monoids are all about properties 
(“expressions that hold true”) like the following:  
 

Associativity 
FOR ANY 3 values X, Y and Z, 
THEN (X + Y) + Z == X + (Y + Z) 
 
Neutral element  
FOR ANY value X 
THEN X + NEUTRAL = X 
AND NEUTRAL + X = X 
 
Absorbing element 
FOR ANY value X 
THEN X + NaN = NaN 

 
Property-based Testing is therefore a perfect fit for 
testing monoids, since PBT tools can directly 
express and test these properties. For example in 
Java we can use JunitQuickCheck to turn test 
cases into properties. Let us express the above 
properties for some custom Balance class with its 
neutral element and some absorbing element called 
Error: 
 
public class Balance { 

 

private final int balance; 

private final boolean error; 

 

public final static Balance ZERO  

                     = new Balance(0); 

public final static Balance ERROR  

               = new Balance(0, true); 

 

public Balance add(Balance other) { 

    return error ? ERROR :  

    other.error ? ERROR :  

 new Balance(balance + other.balance); 

} 

 
The properties could be written: 
 

@RunWith(JUnitQuickcheck.class) 

public class MonoidTest { 

 

@Property 

public void neutralElement( 

     @From(Ctor.class) Balance a) { 

  assertEquals(a.add(ZERO), a); 

  assertEquals(ZERO.add(a), a); 

} 

 

@Property 

public void associativity( 

       @From(Ctor.class) Balance a, 

       @From(Ctor.class) Balance b, 

       @From(Ctor.class) Balance c) { 

  assertEquals(a.add(b).add(c), 

               a.add(b.add(c))); 

} 

 

@Property 

public void errorIsAbsorbingElement( 

        @From(Ctor.class) Balance a) { 

  assertEquals(a.add(ERROR), ERROR); 

  assertEquals(ERROR.add(a), ERROR); 

} 

 
The PBT tool will run these test cases for a number 
(the default being 100) of random values. 
 

Beyond monoids  

When we model real-life domains into software, we 
most frequently recognize Monoids as the 
underlying mathematical structures that best 
matches the domain as we think about it.  
 
But there are many other mathematical structures 
that are valuable to know. To be fair, you don't have 
to know their esoteric names to use them, you just 
have to focus on their respective distinguishing 
feature, or I should say "distinctive property". 
 
Here are some common algebraic structures, each 
with their name (useful if you want to impress 
people) and most importantly the specific property 
that makes them special.  
 
If you just have the closure of the operation, then 
it's called a "magma", don't ask me why. It's a much 
weaker structure than monoids. If you also have 
associativity, then it's called a "semigroup". If you 
add the neutral element, then it becomes a Monoid 

https://github.com/pholser/junit-quickcheck
https://en.wikipedia.org/wiki/Absorbing_element


indeed. And from that we can keep on adding 
specific properties. Note that all these structures are 
all about composition, plus something that helps 
composition even more.  
 
If for any value there exists an *inverse value*, then 
the monoid becomes a "group":  
 

value + inverse-value = neutral element.  
 
It's a strong property to have inverses for all values. 
For example, natural integers don't have inverse 
with respect to addition, but signed integers do: 3 + 
(-3) == 0. In business domains, having inverses is 
less frequent, so groups are less frequently used 
than monoids. Groups are all about compensation, 
with inverse values that can always compensate the 
effect of any value.  
 
Going further, if we can compose not just whole 
elements but also compose values *partially*, then 
we have a vector space. For example we would 
write that (1, 3) + 0.5(6, 8) = (4, 7). Notice the 
coefficient (the real number 0.5 here) that 
modulates the impact of the second term. Money 
with addition can be seen not just as a monoid, but 
as a group, and even as a space vector:  
 
 

 EUR25  
 + 1.5.EUR30  
 = EUR70.  

 
Space vector is all about addition with multiplication 
by a scalar coefficient.  
 
Any structure that happens to yield the same result 
regardless of the ordering of the values is called 
"commutative": a + b = b + a. This is a very strong 
property, not so frequent, so don't expect it too 
much in domain modeling, but if you see it or 
manage to make it so, go for it. Commutativity helps 
a lot especially for situations of "out of order" 
events, for example when distributed systems 
communicate through a network, it’s frequent for 
events a, b, c that used to be in this ordering to 
arrive out of order, e.g. b, a, c. Being commutative 
is the most elegant way to deal with that. Exotic 
structures like CRDT rely on commutativity for that, 
but it’s far beyond the scope of this text. 
 
There's another structure that I like a lot. It's a very 
simple yet common one, and is called the "Cyclic 
Group", and its key idea is the modulo, hence the 

name cyclic. The days of the week form such a 
cyclic group of order 7 (its size), and the months of 
the year are another of order 12. Cyclic groups 
have a finite number of values, and when you reach 
the last value your cycle back to the first one: if the 
order of the cyclic group is 3, then the values are {0, 
1, 2} and 2+1 = 0.  
 
Numeration and time love cyclic groups, and as a 
result, domain-specific numeration and time also 
love them. For example, in finance, financial 
derivatives like options and futures are identified by 
their expiry date, simplified as a month code and a 
year code, e.g. H9 means March 2019, but also 
March 2029 or March 2009. The letter codifies the 
month, and the number codifies the year. They're 
both cyclic groups (one of order 12, and the other of 
order 10). And it turns out that the product of both is 
also a cyclic group of order 12*10 = 120, that's what 
we can learn by looking Wikipedia on Cyclic 
Groups. One benefit from using established 
formalism is that it comes with a lot of proven 
properties and theorems we can rely on safely. One 
of interest is that every cyclic group of order N is 
isomorphic (think equivalent) to the one on integers 
of order N, called Z/nZ. This means in practice that 
you can always implement it with integers as the 
internal state and modulo arithmetics.  
 
Then there are many other more complicated 
algebraic structures available that deal with more 
than one operation and how the operations interact: 
a ring for example generalizes the arithmetic 
operations of addition and multiplication. It extends 
a commutative group (addition) with a second 
operation (multiplication), and requires that this 
second operation distributes with the first one: 
 

a.(b+c) = a.b + a.c  
 
Over the past 15 years I've created my own 
domain-specific values from all the 
above-mentioned structures, and many times 
without knowing the corresponding name. Still, it 
helps to pay attention to the properties that we can 
build upon or not, for a recap, with a given operation 
noted “+”:  
 

● closure of operation T + T is a T  
● associativity: a + (b + c) = (a + b) + c  
● neutral element e such as a + e = a 
● inverse (-a) for any a such as a + (-a) = 0 

(your own zero)  
● using a coefficient: a + alpha.b  

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
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● commutativity : a + b = b + a  
● cycle of order N: a + N = a 

Inheriting the algebraic 
properties from the 
implementation structures  

We usually implement domain-specific concepts 
from the standard built-in types of the programming 
language: boolean, integers and other numbers, 
finite sets of enums, Strings, and all kinds of lists. It 
happens that all these types exhibit many 
properties: numbers are rings, groups, space 
vectors, enums can be seen as Cyclic Groups, 
boolean are groups, lists and maps can easily be 
seen as monoids. And it happens that putting 
several structures next to each other as fields 
(product types) usually preserves the relation if the 
operation on the whole is defined as the field-wise 
operation of each of the components. This explains 
why so many domain concepts *inherit* part of their 
internal implementation structure, unless you mess 
with their operation. Think about it when you 
implement. 

Make your own arithmetic to 
encapsulate additional 
concerns 

Creating your own arithmetic helps keep your code 
simple even when you need to perform calculation 
of a value “with something else”, like keeping track 
of the accuracy of the calculation, or of its 
uncertainty, or anything else. The idea is to expand 
the value into a tuple with the other thing you also 
are about: 
 

(Value, Accuracy) 
(Value, Uncertainty) 

 
And to expand the operation into the tuple-level 
operation, trying to preserve some desirable 
properties along the way.  
 
For example for the type TrustedNumber(Value, 
Uncertainty)  you could define the addition 
operation this way, in a pessimist fashion such as 
the resulting uncertainty is the worst of both 
operands: 
 

public add(TrustedNumber o){ 

  return new TrustedNumber( 

      value + o.value,  

      max(uncertainty, uncertainty)); 

} 

 
This approach is standard in mathematics, for 
example for a complex numbers, or dual numbers.  
 
Creating your own arithmetic is more natural and 
more good-looking with operator overloading, which 
does not exist in Java.  
 
For more examples on how drawing on established 
formalisms and algebraic structures, don’t hesitate 
to dig into JScience; I did a decade ago and I learnt 
a lot from it. It’s built on a *linear algebra* layer of 
supertypes, from which everything else is built 
upon. 
 
 

Case Study: 
Environmental Impact 
Across a Supply Chain 
 
Just like other code snippet across this article, the 
code for this case study is online.  
 
Putting together all what we’ve seen so far, we will 
study the case of a social network to track the 
environmental impact of companies and their 
suppliers.  
 
Let’s consider a pizza restaurant willing to track its 
environmental impact across its complete supply 
chain. Its supply chain can be huge, with many 
direct suppliers, each of them having in turn many 
suppliers, and so forth. The idea is that each 
company in the supply chain will get invited to 
provide its own metrics, at its own level, along with 
the names of its direct suppliers. This happens 
massively in parallel, all around the world, across 
potentially hundreds of companies. And it also 
happens incrementally, with each supplier deciding 
to share their impact when they become able or 
willing to. Still, at any time, we would like to 
compute the most up-to-date aggregated impact for 
the pizza restaurant at the top.  
 

http://jscience.org/api/org/jscience/physics/amount/Amount.html
https://gist.github.com/cyriux/a263efb9c483bcefe72e49c3343ff24e


The impacts we are interested in include the 
number of suppliers involved for one pizza, the 
total energy consumption and carbon emission 
by pizza produced, along with the respective 
margins of error for these numbers, and also the 
proportion of certified numbers (weighted by 
their respective mass in the final product) over the 
whole chain. 
 
We could collect all the basic facts, and then 
regularly run queries to calculate the aggregated 
metrics over the whole dataset each time, a brutal 
approach that would require lots of CPU and I/O. Or 
we could try to start from what we already had and 
then extending it with the latest contributions in 
order to update the result. This later approach can 
save a lot of processing (by reusing past 
calculations, in addition to enabling a 
map-reduce-ish approach), but requires each 
impact to compose smoothly with any other. 
 
We decide to go the later route. We want to 
compose, or ”chain" the impacts together all across 
the chain, to compute the full impact for one pizza in 
our restaurant at the root of the supply chain. 
 
From what we’ve seen, we need to define a concept 
of Environmental Impact that: 

● can represent the metrics available for one 
supplier in isolation  

● can represent the metrics that matter for 
the pizza restaurant in terms of impact at 
the top of the supply chain  

● can compose all supplier’s metrics, and 
their supplier’s, into the aggregated 
metrics for the pizza restaurant. 

 
Out of the impacts we want, the number of suppliers 
is easy to compose: for each supplier (level N), its 
supplier count is exactly 1 plus the supplier counts 
of all its direct suppliers (level N-1). It’s naturally 
additive, in the simplest possible way. The energy 
consumption and carbon emissions are naturally 
additive too. This suggests the following concept in 
code: 
 

public static class 

EnvironmentalImpact { 

  private final int supplierCount;  

  private final  

            Amount energyConsumption; 

  private final Amount carbonEmission; 

  

  // … equals, hashcode, toString 

} 

 
Now in order to compose partial impacts in a way 
that is weighted by their respective contribution to 
the pizza, we make this value a space vector, with 
the “addition” and  "multiplication by a scalar” 
operations: 
 
public EnvironmentalImpact add 

       (EnvironmentalImpact other) { 

  return new EnvironmentalImpact( 

    supplierCount  

        +other.supplierCount, 

    energyConsumption 

        .add(other.energyConsumption), 

    carbonEmission 

        .add(other.carbonEmission)); 

} 

 

public EnvironmentalImpact times  

              (double coefficient) { 

   return new EnvironmentalImpact( 

       supplierCount,  

    energyConsumption 

         .times(coefficient), 

    carbonEmission 

        .times(coefficient)); 

} 

 
Because all these amounts are not that easy to 
measure, they come with significant margins of 
error, which we’d like to track when it comes to the 
end result. This is specially important when 
suppliers don’t provide their impact, so we have to 
guess it, with some larger margin of error. This 
could make the calculations quite complicated, but 
we know how to do that in a simple way, using 
another tuple that gathers the amount, its unit and 
its margin of error: 
 



public static class Amount { 

  private final double value; 

  private final String unit; 

  private final double errorMargin; 

  // … equals, hashcode, toString 

} 

 
And because we want to add these amounts 
weighted by coefficients, we want to make it a 
space vector as well, with the addition and 
multiplication by a scalar: 
 
public Amount add(Amount other) { 

  if (!unit.equals(other.unit)) 

      throw new 

IllegalArgumentException( 

      "Amounts must have same units: "  

        + unit + " <> " + other.unit); 

   return new Amount( 

     value + other.value,  

     unit,  

     errorMargin + other.errorMargin); 

} 

 
 public Amount times( 

             double coefficient) { 

    return new Amount( 

      coefficient * value,  

      unit,  

      coefficient * errorMargin); 

} 

 
We’re lucky the error margins are additive too. But 
it’s also possible to calculate them for any other 
operation than just addition if we wanted to. 
 
Now we’re almost done, but remember we wanted 
to track the proportion of certified numbers in the 
whole chain. A proportion is typically expressed in 
percentage, and it’s a ratio. If we compose one 
impact that is 100% certified with two other that are 
not at all, then we should end up with a proportion 
of certification of 1/3, i.e. 33%. But we want this 
proportion to be weighted by the respective mass of 
each supplier in the final product. We notice that 
this kind of weighted ratio is not additive at all, so 
we need to use the trick of making it into a tuple: 
(total certification percents, total of the weights in 
kg), which we can compose with addition and 
multiplication by a scalar. 
 
So we now decorate the Amount class with a 
CertifiedAmount class that expands it with this 
tuple: 

 
/** An amount that keeps track of its 

percentage of certification */ 

public static class CertifiedAmount { 

  private final Amount amount; 

  // the total certification score 

  private final double score; 

  // the total weight of the certified 

thing 

  private final double weight;  

 
And we update our EnvironmentalImpact class to 
use the CertifiedAmount instead of the Amount, 
which is easy since it has the exact same methods 
names and signatures. 
 
Now let’s use that for 1 pizza, that is made of 1 
dough, 0.3 (kg) of tomato sauce and some cooking 
in the restaurant. 
 
EnvironmentalImpact cooking = 

singleSupplier( 

  certified(1, "kWh", 0.3), // energy 

  certified(1, "T", 0.25)); // carbon 

EnvironmentalImpact dough = 

singleSupplier( 

  uncertified(5, "kWh", 5.),  

  uncertified(0.5, "T", 1.)); 

EnvironmentalImpact tomatoSauce = 

singleSupplier( 

  uncertified(3, "kWh", 1.),  

  certified(0.2, "T", 0.1)); 

 
Which displayed into the console: 
 
EnvironmentalImpact(1 supplier,  
  energy: 1.0+/-0.3 kWh (100% certified),  
  carbon: 1.0+/-0.25 T (100% certified)) 
EnvironmentalImpact(1 supplier,  
  energy: 5.0+/-5.0 kWh (0% certified),  
  carbon: 0.5+/-1.0 T (0% certified)) 
EnvironmentalImpact(1 supplier,  
  energy: 3.0+/-1.0 kWh (0% certified),  
  carbon: 0.2+/-0.1 T (100% certified)) 
 
From that we can calculate the full impact of the 
restaurant by chaining each impact: 
 
EnvironmentalImpact pizza = cooking 

  .add(dough) 

  .add(tomatoSauce.times(0.3)); 

 
If we print the resulting impact into the console, we 
get: 



 
EnvironmentalImpact(3 suppliers,  
  energy: 6.9+/-5.6 kWh (43% certified),  
  carbon: 1.56+/-1.28 T (56% certified)) 
 
Which is what we wanted. We can then extend that 
approach for many other dimensions of 
environmental impact accounting, more details on 
accuracy, estimated vs measured vs calculated 
values, traceability of the numbers etc., just by 
expanding the concepts at each level, while still 
keeping it all as nested mathematical structures that 
compose perfectly. This approach scales for high 
complexity, and for high cardinality as well.  
 

Domain-Driven Design 
loves monoids  
 
Domain-Driven Design leans towards a functional 
programming style in various aspects. The most 
visible is the obvious Value Object tactical pattern, 
but in the Blue Book you can also find the patterns 
Side-Effect-Free Functions, Closure of Operations, 
Declarative Design and Drawing on Established 
Formalisms. 
 
It turns out that if you put all of them together, you 
end up with something like monoids. 
 
Monoids are everywhere, even in Machine 
Learning, with the ubiquitous matrices and tensors, 
and with the key trick of composing derivatives 
together thanks to the Chain Rule.  
 
Once you’ve used monoids a few times you can’t 
but fall in love with them. As a consequence, you try 
to make everything into a monoid. For example with 
my friend Jeremie Chassaing we’ve discussed 
monoids and Event Sourcing, and he kept 
investigating how to make Monoidal Event Sourcing 
(see his related blog post).  
 
The code for the code snippets in this text are all 
online as Github gists: https://gist.github.com/cyriux 
 
Many thanks to my colleague Mathieu Eveillard for 
reviewing an early draft, and to Eric Evans, Mathias 
Verraes, Yvan Phelizot for the constructive reviews 
and feedbacks. 
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