
Domain modeling
with monoids
Cyrille Martraire, Arolla, 2018

It is unlucky the word “Monoid” is so awkward, as it
represents a concept that is both ubiquitous and
actually simple.

Monoids are all about *composability*. It's about
having abstractions in the small that compose
infinitely in the large.

You are already familiar with many cases of typical
monoidal composeablity, such as everything
group-by, or everything *reduce*. What I want to
emphasize is that Monoids happen to be frequent
occurrences in business domains, and that you
should spot them and exploit them.

Since I’ve first talked about my enthusiasm for
monoids at conferences around the world, I’ve
received multiple positive feedbacks of concrete
situations where monoids helped teams redesign
complicated parts of their domain models into
something much simpler. And they would then say
that the new design is “more elegant”, with a smile.

Just one important warning: please don’t confuse
monoids with monads. Monoids are much easier to
understand than monads. For the rest of the text,
we will keep monads out of scope, to focus solely
on monoids and their friends.

What are Monoids?

Monoids come from a part of mathematics called
abstract algebra. It's totally intimidating, but it really
doesn't have to, at least not for monoids, which are
creatures so simple that kids pretty much master
them by age of 2 (without knowing of course)

So what are monoids? A monoid is a mathematical
structure. First we start with a simple set. A set is
just a criterion to decide if elements belong or not to
the set. Yes it’s a bit circular a definition but you get
the idea.

I usually explain monoids through glasses of beer,
but here I will use plumbery pipes. For example,
let's define a set of pipes this way:

 ”The set of pipes with a hole this size”

Given this definition of our set, now we can test if
various elements belong to it or not.

On top of this set, we define an operation, that we
can call "combine", “append”, "merge", or "add",
that takes two elements and combines them. 1

One funny thing we notice now is that given two
elements from the set, the result is always... in the
set too! That sounds like nothing, but that's what
Closure of Operations is all about: the set is closed
under this operation. It matters. We have a little
system that's all about itself, always. That's cool.

But there's more to it. If you first combine the first
two pipes together, then combine the result with the
third pipe, or if you first combine the last two pipes
then you combine the first pipe with it, then you end
up with the exact same result. We're not talking
about changing the ordering of the pipes, just the
ordering of combining them. It's like putting the
parenthesis anywhere doesn't change the result.
This is called Associativity, and is important.

1 In the world of pipes it could be named ‘weld”.

By the way changing the ordering of the pipes
would be called Commutativity, and we have it if
they all are identical, but this property is not as
frequent.

So we have a set of elements, an operation with
results that are all in the set, and that is associative.
To really be a monoid, you need one more thing:
you have to define one more kind of pipe, that is
invisible, so I can't show it to you. But believe me, it
exists, because as a developer I can create the
system the way I prefer it to be. This special
element belongs to the set: it has a hole the right
size. So whenever I combine this special element
with any other, the result is just the other element
itself. It doesn't change anything. That's why we call
it the neutral, or identity element.

And voilà! A set, an operation, closure of this
operation, associativity, and neutral element: that's
the formal definition of a monoid!

Ok at this point, you are perhaps like:

But stay with me, we'll see how this really closely
relates to your daily job.

So what?

So when I started explaining monoids to people I
also explained it to my wife. She instantly got it, but
then asked: what for?

So I was the one wondering for a few seconds. Why
does it matter to me? I believe it's all about dealing
with encapsulating some diversity inside the
structure.

You probably know the old joke in programming:

 There are only three numbers in
programming: 0, 1, and MANY.

That's so true. But this also illustrates a very
common kind of diversity we face all the time: the
singular, the plural, and the absence. Monoids
naturally represent the singular, with the elements
of the set. It also deals with the plural, thanks to the
combine operation that can take a plural and turn it
back into an element as usual. And the neutral
element takes care of the absence case, and it also
belongs to the set. So monoids encapsulate this
diversity inside their structure, so that from the
outside you don't have to care about it. That's a
great idea to fight the battle against complexity.

In the wild real life problems that we have, if we're
not careful, we have to deal with various concepts,
each potentially having their own diversity of being
either singular, plural, or nothing. In the worst case,
you'd end up with the cartesian product of all cases.
It doesn't scale well.

Once you encapsulate this diversity inside a monoid
for each concept, then you only have one case for
each, and together it remains one single case.

If you apply that often, then you can deal with high
levels of complexity with ease. Monoids help scale
in complexity. In fact, if you're comfortable in
object-oriented programming, you may recognize
something familiar you're doing already: for a given
interface, I often find myself using the Composite
pattern to deal with the plural, and the NullObject
pattern to deal with the absence. These patterns
help deal with singular, plural and absence
consistently, so that the caller code doesn't even
have to know. That's similar in purpose.

Examples Please!

You already know a lot of monoids in your
programming language:

● Integer with addition: Integers are closed
under addition: int + int = int. They're
associative: (3+5)+2=3+(5+2), and their
neutral element is 0, since any integer plus
zero gives the same integer.

● Lists with list append operation: List + List
= List is closed under this appending,
which is associative: (a)+(b ,c)=(a , b)+(c).
And the empty list is the neutral element
here.

● A special case of lists, Strings with
concatenation: "hello" + "world" is a string
too. It's associative: "cy"+"ri"+"lle", and the
neutral element is the empty string.

Note that integers can also form a monoid with the
multiplication operation, in which case the neutral
element would be 1. But natural integers with
subtraction do not form a monoid, because 3 - 5 is
not in the set of natural integers but it would in the
set of integers.

All this is not difficult. Still, such a simple thing is a
key to very complex behaviors. It's also the key to
infinite scalability of space (think Hadoop), and the
key to infinite incremental scalability (think Storm).
There's one joke in Big Data circles:

 If you're doing Big Data and you don't know what
an abelian group is, then you do it wrong!

It's all about *composability*, which is highly
desirable pretty much everywhere. .

Implementing monoids in
your usual programming
language

So how do we implement monoids in plan Java
code?

Monoids are typical Functional
Programming; In Functional Programming
everything is a value; Therefore: Monoids
are values!

That's a solid proof that monoid are value objects.
Seriously though they do have to be value objects,
i.e. immutable and equality by value. But monoid
objects don't have to be anemic, with just data.
They are supposed to have behavior, and in
particular behavior that compose, like lengths,
where we want to be able to write: "18 m + 16 m =
34 m". The corresponding code for this method
would be:

public Length add(Length other){

 return new Length(

 value + other.value);

}

This add() method returns a new instance, as value
objects should do. It must not perform any
side-effect, as advocated by the DDD
"Side-Effect-Free Functions" pattern. Immutability
and Side-Effect-Free Functions together are good
taste! That should be your default style of
programming, unless you really have to do
otherwise.

In addition, being immutable and side-effect-free
means that testing is a no-brainer: just pass data in,

and assert the result out. Nothing else can happen
to make it more complicated.

Monoids in domain
modeling

Domain-specific lists, like a mailing list defined as a
list of emails addresses, can form a monoid at least
twice, once with the union operation, and a second
time with the intersection operation. The neutral
element would be nobody() in the former case, and
everybody() in the latter case. Note the naming of
the neutral elements that is domain-specific, instead
of more generic names like *empty* or *all*. But we
could go further and rename the intersection()
operation into a word like *overlapping* is this was
the way the domain experts talked about this
problem.

Money and Quantity

Let's start with the good old Money analysis pattern,
from Martin Fowler: (EUR, 25) + (EUR, 30) = (EUR,
55). And in case the currencies don't match, we
would throw an exception in the add method. Note
that throwing exception indeed break perfect
composability, but in practice we could deal with
some, as long as they only reveal coding mistakes.

Our money class would be defined in UML like this:

The Money pattern is indeed a special case of the
more general Quantity analysis pattern:
"Representing dimensioned values with both their
amount and their unit" (Fowler).

Cashflows and sequences of
cashflows

Now that we have a money amount, we can make it
into a cashflow, by adding a date:

 (EUR, 25, TODAY)
+ (EUR, 30, TODAY)
= (EUR, 55, TODAY)

And again we could throw an exception if the dates
don't match.

Looking at the UML class diagram, it's striking that
the class only refers to its own type, or primitives (in
the constructor, not shown here). Methods take
Cashflow as parameter, and return Cashflow, and
nothing else.

This is what Closure of Operation means in code.
This type is egotistic, it only talks about itself. That's
a desirable quality for code, as advocated in the
DDD book, and it's one of the mandatory properties
of a monoid.

But why stop there? We typically deal with many
cashflows that go together, and we also think of
them as stuff we can add:

So once again, we want to be able to write the code
the exact same way:

 Cashflow Sequence
+ Cashflow Sequence
= Cashflow Sequence.

At this point you get the picture: monoid are all
about what we could call an arithmetics of objects.

Note that the addition operation in the Cashflow
Sequences above is in basically the list
concatenation (e.g. addAll() in Java), where
cashflows on the same date and on the same
currency are then added together using the addition
operation of the cashflow themselves.

Ranges

A range of numbers or a range of dates can be
seen as a monoid, for example with the
compact-union operation, and the empty range as
the neutral element:

 [1, 3] Union [2, 4] = [1, 4] // compact union
 [1, 3] Union][= [1, 3] // neutral element

By defining the operation of “compact” union:

public final class Range{

 private final int min;

 private final int max;

 public final static EMPTY

= new Range();

 public Range union(Range other){

 return new Range(

 min(this.min, other.min),

 max(this.max,other.max));

 }

}

Note that the internal implementation can absolutely
delegate the work to some off-the-shelf
implementation, e.g. some well-known, well-tested
open-source library.

Predicates
Predicates are natural monoids, with logical AND
and the ALWAYS_TRUE predicate, or with logical
OR and the ALWAYS_FALSE predicate.

Grants

But even unexpected stuff like read/write/execute
grants can form a monoid with some merge
operation defined for example as "the most secure
wins"::

 r merge w = r
 w merge x = w

The implementation could be an enum and perform
a MIN on the internal ordering of each value.

public final enum Grant{

 R, W, X;

 public Grant merge(Grant other){

 return min(this.ordinal(),

 other.ordinal());

 }

}

Of course it’s up to your domain expert to decide
which exact behavior is expected here, and how the
operation should be named.

Monoids of monoids are
monoids

Nesting monoids can easily lead to monoids. For
example in many systems you have configuration
maps for the settings of an application. You often
have a default hardcoded one, then by order of
precedence one by department, then another by
desk, and ultimately one by user. This leads
naturally to a monoid form:

MonoidMap + MonoidMap = MonoidMap

One simple way to do that is just combine the maps
with the LAST ONE WINS policy:

public MonoidMap append(

 MonoidMap other) {

 Map<String, Object> result

 = new HashMap<>(this.map);

 result.putAll(other.map);
 return new MonoidMap(result);

}

But we can go further if all values are also monoids,
and let each value make its own monoidal magic:

In our example, colors are combined by an
OVERWRITE operation (last value wins), Enable
values are combined by a logical OR operation,
while Timeout values are combined by an integer
MIN operation. You can see here that all the value
are monoids by themselves with these operations.
By defining the map-level combine operation (here
noted +) by delegating to the monoid operation of
each value, in parallel for each key, then we also
have the configuration maps as monoids. Their
neutral element could be either an empty map, or a

map with all the neutral elements of each type of
value.

public NestedMonoidMap append(

 NestedMonoidMap other) {

 Map<String, Monoid<?>> result

 = new HashMap<>(map);

 for (String key:other.map.keySet()){

 Monoid value = map.get(key);

 Monoid value2 = other.map.get(key);

 result.put(key, value == null ?

 value2 :

 (Monoid)value.append(value2));
 }

 return new NestedMonoidMap(result);

}

Of course in this example, each value would have
to be itself a monoid, with its own specific way to
append or merge.

What I like in this example is also that it shows that
value objects don't have to be small-ish. We can
have huge objects trees as values and as monoids,
and it works well. And don't obsess too much about
the memory allocation here, most of the values are
reused many times, really.

Non Linear

But not everything is that easy to model as
monoids. For example, if you have to deal with
partial averages and want to compose them into a
bigger average, you cannot write: Average +
Average as it would just be WRONG:

 Average + Average = WRONG

Average calculation just doesn't compose at all.
This makes my panda sad.

But if you really want to make it into a monoid, then
you can do it! The usual trick is to go back to the
intermediate calculation, in which you can find some
composable intermediate sub-calculations:

 avg = sum / count

And it turns out that put together as a tupple, it
composes quite well, using a tuple-level addition
defined as the addition of each term:

(sum, count) + (sum, count) = (sum, count)

Which internally becomes:
 (sum_0, count_0)
+ (sum_1, count_1)
= (sum_0 + sum_1, count_0 + count_1)

So you can combine tuples at large scale, across
many nodes for example, and then when you get
the final result as a tuple, then you just finish the
work by taking the average out of it by actually
doing the division sum/count.

public class Average {

 private final int count;

 private final int sum;

 public static final Average NEUTRAL

 = new Average(0, 0);

 public static final

 Average of(int... values) {

 return new Average(

 values.length,

 stream(values).sum());

 }

 private Average(int count, int sum){

 this.count = count;

 this.sum = sum;

 }

 public double average() {

 return (double) sum / count;

 }

 public int count() {

 return count;

 }

 public Average add(Average other) {

 return new Average(

 count + other.count,
 sum + other.sum);

 }

 …// hashcode, equals, toString

}

And if you need the standard deviation, you can do
the same trick, just by adding the sum of the values
at the power of two (sum2):

 (sum2, sum, count)
+ (sum2, sum, count)
= (sum2, sum, count),

Which internally becomes:

 (sum2_0, sum_0, count_0)
+ (sum2_1, sum_1, count_1)
= (sum2_0, + sum2_1,
 sum_0 + sum_1,
 count_0 + count_1)

as there's a formula to get the standard deviation
out of that:

“the standard deviation is equal to the
square root of the difference between the
average of the squares of the values and
the square of the average value.”

STD = square root[1/N.Sum(x^2) - (1/N.Sum(x))^2]

Monoids don’t have to use addition, here’s an
example of a monoid of ratios with the operation of
multiplication:

public class Ratio {

 private final int numerator;

 private final int denumerator;

 public static final Ratio NEUTRAL =

 new Ratio(1, 1);

 public Ratio(

 int numerator, int denumerator){

 this.numerator = numerator;

 this.denumerator = denumerator;

 }

 public double ratio() {

 return numerator / denumerator;

 }

 public Ratio multiply(Ratio other) {

 return new Ratio(

 numerator * other.numerator,
 denumerator * other.denumerator);
 }

 ...// hashcode, equals, toString

}

Over the years I've grown the confidence that
anything can be made into a monoid, with these
kinds of tricks. Histograms with fixed buckets
naturally combine, bucket by bucket:

The corresponding code for the add operation adds
the number of elements in each respective bucket:
public Histogram add(Histogram other)

{

 if (buckets.length !=

 other.buckets.length) {

 throw new IllegalArgumentException(

 "Histograms must have same size");

 }

 int[] bins = new

int[buckets.length];

 for

 (int i = 0; i < bins.length; i++){

 bins[i]
 = buckets[i] + other.buckets[i];

 }

 return new Histogram(bins);

}

If histograms have heterogeneous buckets, they
can be made to compose using approximations (eg
curves like splines) that compose.

Moving average don't compose unless you keep all
their respective memories and combine them just
like the histograms. But by looking into
small-memory microcontroller litterature you can
find alternative ways to calculate them that
compose with much less memory footprint, e.g.
using just a couple of registers.

Note that one potential impediment to making an
arbitrary calculation into a monoid could be
concerns such as being ill-conditioned, or value
overflow, but I never had this issue myself.

Monoids And Friends:
Applications Notes

As shown with the pipes, monoids are ubiquitous in
our daily lives, and are part of our universal
language to describe things, even without ignoring
their abstract definition. Everybody knows how to

stack glasses or chairs. My kids know how to
combine wooden trains together to create longer
trains.

Declarative style

This ability to compose stuff is part of our mental
models, and as such can be part of our Ubiquitous
Language in the DDD sense. For example in the
hotel booking domain, we could say that a booking
from January 21 to 23 combined to another booking
in the same hotel from January 23 to 24 is
equivalent to one single booking from January 21 to
24:

 Booking [21, 21]
 + Booking [23, 24]
 = Booking [21, 24]

Which we could sketch like this, as ranges with
some union operation:

The code for the operation would just take the min
and max of both dates and check they share one
date. It would probably be a commutative operation
in this case. And in programming languages with
operator overloading like Scala, we could really
replace expressions like a.add(b) by a + b

Using monoids helps having a more declarative
style in our code, another point that is advocated for
by Eric Evans in the DDD book.

Let's consider another example of price plans of
mobile phones. There's a potential fixed monthly
fee, a potential annual fee for things like insurance,
some potential one-off fees for extra options that
you pay when you activate it etc. For a given price
plan for a given customer, you have to select the
cash flows sequences that match, then add them to
create the invoice. We could draw the domain
problem like this:

Unfortunately then developers tend to implement
this kind of problem with an accumulation of special
cases:

// without monoids

PaymentsFees(...)

PaymentsFeesWithOptions(...)

PaymentsFeesWithInsuranceAndOptions(.)

PaymentsFeesWithInsurance(...)

NoFeesButInsurance(...)

...

Whereas once you recognize that the cash flow
sequences form a monoid, then you can just
implement exactly the way you think about it:

// basic generators

monthlyFee(...) : Payments

options(...) : Payments

insurance(...) : Payments

// your custom code to combine

Payments invoice = monthlyFee

 .add(options)

 .add(insurance);

One major benefit is that the cognitive load is
minimal. You just have to learn the type and its
combine method, and that's it. And yet it gives you
an infinite number of possibilities to combine them
into exactly what you want.

Domain-Specific, within one
Bounded Context

You may be tempted to reuse monoidal value
objects across various parts of a larger system, but
I would not advocate that. Even something as

simple a Money class can be specific to some
sub-domain.

For example in pretrade you would have a Money
optimized for speed and expressed as an integer,
as a multiple of the trading lot size, whereas for
accounting you’d use a BigDecimal-based
implementation that would ensure the expected
accuracy even after summing many amounts and
even after many foreign exchange conversions.

Another example this time with cashflows: in a
tax-related domain, you can’t just add an
reimbursement cashflow to an interest cashflow, as
they are treated very differently by the tax
institution, whereas in an investment domain you
would just add them all together without any
constraint. For more on that point, I suggest
Mathias Verraes blog post where he notes:

...dealing with money is too critical to be
regarded as a Generic Subdomain.
Different projects have different needs and
expectations of how money will be
handled. If money matters, you need to
build a model that fits your specific
problem space...

Monoid, multiple times.
It’s not uncommon for some domain concept to be a
monoid more than once, for example once with
addition and the neutral element ZERO, and a
second time with multiplication and the neutral
element ONE. As long as it makes enough sense
from a domain perspective, then it’s desirable to
have more structures (being a monoid multiple
times) or to be a stronger structure (see other
mathematical structures later in this document).

Internal implementation
hackery

Also note that neutral elements may call for some
internal magical hacks for their implementation. You
may rely on a magic value like -1 or
Integer.MIN-VALUE, or on some special
combination of magic values. You may think it’s bad
code, and it would be if it was meant to be seen or
used regularly. However as long as it’s well-tested
(or built from the tests) and as long as it’s totally
invisible for the caller of the class, then it will only

http://verraes.net/2016/02/type-safety-and-money/

cause harm when you are changing this class itself,
which is probably acceptable. A monoid typically is
not subject to a lot of changes, it’s a finely tuned
and highly consistent system that just works
perfectly, thanks to its mathematical ground.

Established Formalisms, for
Living Documentation

Monoids are one of the most frequent algebraic
structures we can observe in the world of business
domains. But other structures like groups (monoids
with inverse elements), space vectors (addition with
multiplication by a real number coefficient) and
cyclic groups (think modulo) are also common. You
can learn more about all these structures on
Wikipedia and see whether they apply for your
practical domain problems.

But the fact that these structures are totally
described in the maths literature is important. It
means that these solutions are established
formalisms, which successfully passed the test of
time. The DDD book actually advocates drawing on
Established Formalisms for this reason.

Another reason is that you don't have to document
them yourself. Just refer to the reference with a link
and you're done. That's very much Living
Documentation!

So if we want to document the fact that we
implement a monoid, we could create a specific
annotation @Monoid(String neutralElement), that
could then be used to annotate a combine method
on some class:

Alternatively since Java 8 you could define a
class-level annotation

 @Monoid(neutralElement="emptyList",

 operation="union")

Since a class can be a monoid several times, you
would also need to mark the custom annotation as
@Repeatable and define its container annotation
Monoids, so that you can then annotate a class
multiple times:

 @Monoid(neutralElement="one",

 operation="multiply")

 @Monoid(neutralElement="zero",

 operation="add")

Self-Explaining Values
Now suppose you want a complete audit on all the
calculations, from the initial inputs to the result.
Without monoids you'll have a bad time going
through all the calculations to insert logs at each
step, while making the code unreadable and with
plenty of side-effects.

But if the calculations are done on a type like a
monoid, with custom operations, then you could just
enrich the operations with internal traceability audit
trail:

public static class Ratio {

private final int numerator;

private final int denumerator;

private final String trace;

public Ratio multiply(Ratio other) {

 return new Ratio(

 numerator * other.numerator,

 denumerator * other.denumerator,

 "(" + asString() + ")*("

 + other.asString() + ")");

}

public String asString() {

 return numerator + "/" + denumerator;

}

With this built-in traceability, we can ask for the
explanation of the calculation afterwards:

new Ratio(1, 3)

 .multiply(new Ratio(5, 2))

 .trace()

// trace: “(1/3)*(5/2)“

One question with the trace is to decide whether or
not to use for the object equality. For example, is
(5/6, “”) really equal to (“⅚, “(1/3)*(5/2)”)? One
way is to ignore the trace in the main object
equals(), and to create another strictEquals() if
necessary that uses it.

Encapsulated Error Handling

Many calculations can fail. We cannot divide a
number by the number zero. We cannot subtract 7
from 5 in the set of natural integers. In software,
error handling is an important source of accidental
complexity, like in defensive programming, with
checks statements bloating every other line of code.

The traditional way to go to simplify is to throw
exceptions, however it defeats the purpose or
composability since it breaks the control flow. In
practice I observe that throwing is acceptable for
errors that are nothing but coding errors; once fixed
they should never happen anymore, so for practical
matters we have apparent composability.

An alternative to exceptions that can really happen
at runtime is to make the monoidal operation a
total function. A total function is a function that
accepts any possible value for all its parameters,
and therefore always returns a result for them. In
practice the trick is to introduce a special value that
represents the error case. For example in the case
if division by zero, Java has introduced the special
value NaN, for Not-a-Number.

Because a monoid has to follow the Closure of
operation, it follows that the special extra value has
to be part of the set of legal values for the monoid,
not just as output but also as input. Usually the
implementation of the operation would just bypass
the actual operation and immediately return NaN
when you get a NaN as a parameter: you propagate
the failure, but in a composable fashion.

This idea was proposed by Ward Cunningham as
the Whole Object pattern from his CHECKS
patterns. Java Optional, and monads in functional
programming languages, like the Maybe monad and
its two values Some or None, are similar
mechanisms to achieve this invisible propagation of

failure. This is a property of an Absorbing Element
like NaN: a + NaN = a

In the case of ranges with the union operation, you
may want to introduce a special element
NotARange to represent the error case of the union
of disjoint ranges:

In the case of natural integers and subtraction, the
way to make the function total is to extend the set
with negative integers (which at the same time will
promote the monoid into a group with inverses) The
way to make the square root function (nothing to do
with a monoid) a total function would be to extend
the set from real numbers to the superset of
complex numbers.

How to turn anything into a
monoid

This idea of extending the initial set with additional
special values is a common trick for monoids, and
not just for error handling. It’s also useful to
artificially turn any set into one that is closed under
a given operation.

Given a function with some input I and output O that
are not of the same type, we can always turn it into
a monoid by introducing the artificial type that is the
tuple of both types: (I, O).

For example, given a function that gets a String and
returns an integer, we can introduce the type
Something (String, int), so that we now have a
function that gets a Something and also returns a
Something.

Testing Monoids
As mentioned already, monoids are easy to test as
they’re immutable and have no side-effect. Given
the same inputs, the combine operation will always
return the same result. And with just one single
function, the testing surface of a Monoid is minimal.

https://en.wikipedia.org/wiki/Absorbing_element
https://en.wikipedia.org/wiki/Absorbing_element

Still monoids should be tested on all their important
properties, like being associative, and on some
random values, with an emphasis on the neutral
elements, any artificial value like NaN or Special
Cases, and when approaching the limits of the set
(MAX_VALUE...).

Since monoids are all about properties
(“expressions that hold true”) like the following:

Associativity
FOR ANY 3 values X, Y and Z,
THEN (X + Y) + Z == X + (Y + Z)

Neutral element
FOR ANY value X
THEN X + NEUTRAL = X
AND NEUTRAL + X = X

Absorbing element
FOR ANY value X
THEN X + NaN = NaN

Property-based Testing is therefore a perfect fit for
testing monoids, since PBT tools can directly
express and test these properties. For example in
Java we can use JunitQuickCheck to turn test
cases into properties. Let us express the above
properties for some custom Balance class with its
neutral element and some absorbing element called
Error:

public class Balance {

private final int balance;

private final boolean error;

public final static Balance ZERO

 = new Balance(0);

public final static Balance ERROR

 = new Balance(0, true);

public Balance add(Balance other) {

 return error ? ERROR :

 other.error ? ERROR :

 new Balance(balance + other.balance);

}

The properties could be written:

@RunWith(JUnitQuickcheck.class)

public class MonoidTest {

@Property

public void neutralElement(

 @From(Ctor.class) Balance a) {

 assertEquals(a.add(ZERO), a);

 assertEquals(ZERO.add(a), a);

}

@Property

public void associativity(

 @From(Ctor.class) Balance a,

 @From(Ctor.class) Balance b,

 @From(Ctor.class) Balance c) {

 assertEquals(a.add(b).add(c),

 a.add(b.add(c)));

}

@Property

public void errorIsAbsorbingElement(

 @From(Ctor.class) Balance a) {

 assertEquals(a.add(ERROR), ERROR);

 assertEquals(ERROR.add(a), ERROR);

}

The PBT tool will run these test cases for a number
(the default being 100) of random values.

Beyond monoids

When we model real-life domains into software, we
most frequently recognize Monoids as the
underlying mathematical structures that best
matches the domain as we think about it.

But there are many other mathematical structures
that are valuable to know. To be fair, you don't have
to know their esoteric names to use them, you just
have to focus on their respective distinguishing
feature, or I should say "distinctive property".

Here are some common algebraic structures, each
with their name (useful if you want to impress
people) and most importantly the specific property
that makes them special.

If you just have the closure of the operation, then
it's called a "magma", don't ask me why. It's a much
weaker structure than monoids. If you also have
associativity, then it's called a "semigroup". If you
add the neutral element, then it becomes a Monoid

https://github.com/pholser/junit-quickcheck
https://en.wikipedia.org/wiki/Absorbing_element

indeed. And from that we can keep on adding
specific properties. Note that all these structures are
all about composition, plus something that helps
composition even more.

If for any value there exists an *inverse value*, then
the monoid becomes a "group":

value + inverse-value = neutral element.

It's a strong property to have inverses for all values.
For example, natural integers don't have inverse
with respect to addition, but signed integers do: 3 +
(-3) == 0. In business domains, having inverses is
less frequent, so groups are less frequently used
than monoids. Groups are all about compensation,
with inverse values that can always compensate the
effect of any value.

Going further, if we can compose not just whole
elements but also compose values *partially*, then
we have a vector space. For example we would
write that (1, 3) + 0.5(6, 8) = (4, 7). Notice the
coefficient (the real number 0.5 here) that
modulates the impact of the second term. Money
with addition can be seen not just as a monoid, but
as a group, and even as a space vector:

 EUR25
 + 1.5.EUR30
 = EUR70.

Space vector is all about addition with multiplication
by a scalar coefficient.

Any structure that happens to yield the same result
regardless of the ordering of the values is called
"commutative": a + b = b + a. This is a very strong
property, not so frequent, so don't expect it too
much in domain modeling, but if you see it or
manage to make it so, go for it. Commutativity helps
a lot especially for situations of "out of order"
events, for example when distributed systems
communicate through a network, it’s frequent for
events a, b, c that used to be in this ordering to
arrive out of order, e.g. b, a, c. Being commutative
is the most elegant way to deal with that. Exotic
structures like CRDT rely on commutativity for that,
but it’s far beyond the scope of this text.

There's another structure that I like a lot. It's a very
simple yet common one, and is called the "Cyclic
Group", and its key idea is the modulo, hence the

name cyclic. The days of the week form such a
cyclic group of order 7 (its size), and the months of
the year are another of order 12. Cyclic groups
have a finite number of values, and when you reach
the last value your cycle back to the first one: if the
order of the cyclic group is 3, then the values are {0,
1, 2} and 2+1 = 0.

Numeration and time love cyclic groups, and as a
result, domain-specific numeration and time also
love them. For example, in finance, financial
derivatives like options and futures are identified by
their expiry date, simplified as a month code and a
year code, e.g. H9 means March 2019, but also
March 2029 or March 2009. The letter codifies the
month, and the number codifies the year. They're
both cyclic groups (one of order 12, and the other of
order 10). And it turns out that the product of both is
also a cyclic group of order 12*10 = 120, that's what
we can learn by looking Wikipedia on Cyclic
Groups. One benefit from using established
formalism is that it comes with a lot of proven
properties and theorems we can rely on safely. One
of interest is that every cyclic group of order N is
isomorphic (think equivalent) to the one on integers
of order N, called Z/nZ. This means in practice that
you can always implement it with integers as the
internal state and modulo arithmetics.

Then there are many other more complicated
algebraic structures available that deal with more
than one operation and how the operations interact:
a ring for example generalizes the arithmetic
operations of addition and multiplication. It extends
a commutative group (addition) with a second
operation (multiplication), and requires that this
second operation distributes with the first one:

a.(b+c) = a.b + a.c

Over the past 15 years I've created my own
domain-specific values from all the
above-mentioned structures, and many times
without knowing the corresponding name. Still, it
helps to pay attention to the properties that we can
build upon or not, for a recap, with a given operation
noted “+”:

● closure of operation T + T is a T
● associativity: a + (b + c) = (a + b) + c
● neutral element e such as a + e = a
● inverse (-a) for any a such as a + (-a) = 0

(your own zero)
● using a coefficient: a + alpha.b

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Cyclic_group

● commutativity : a + b = b + a
● cycle of order N: a + N = a

Inheriting the algebraic
properties from the
implementation structures

We usually implement domain-specific concepts
from the standard built-in types of the programming
language: boolean, integers and other numbers,
finite sets of enums, Strings, and all kinds of lists. It
happens that all these types exhibit many
properties: numbers are rings, groups, space
vectors, enums can be seen as Cyclic Groups,
boolean are groups, lists and maps can easily be
seen as monoids. And it happens that putting
several structures next to each other as fields
(product types) usually preserves the relation if the
operation on the whole is defined as the field-wise
operation of each of the components. This explains
why so many domain concepts *inherit* part of their
internal implementation structure, unless you mess
with their operation. Think about it when you
implement.

Make your own arithmetic to
encapsulate additional
concerns

Creating your own arithmetic helps keep your code
simple even when you need to perform calculation
of a value “with something else”, like keeping track
of the accuracy of the calculation, or of its
uncertainty, or anything else. The idea is to expand
the value into a tuple with the other thing you also
are about:

(Value, Accuracy)
(Value, Uncertainty)

And to expand the operation into the tuple-level
operation, trying to preserve some desirable
properties along the way.

For example for the type TrustedNumber(Value,
Uncertainty) you could define the addition
operation this way, in a pessimist fashion such as
the resulting uncertainty is the worst of both
operands:

public add(TrustedNumber o){

 return new TrustedNumber(

 value + o.value,

 max(uncertainty, uncertainty));

}

This approach is standard in mathematics, for
example for a complex numbers, or dual numbers.

Creating your own arithmetic is more natural and
more good-looking with operator overloading, which
does not exist in Java.

For more examples on how drawing on established
formalisms and algebraic structures, don’t hesitate
to dig into JScience; I did a decade ago and I learnt
a lot from it. It’s built on a *linear algebra* layer of
supertypes, from which everything else is built
upon.

Case Study:
Environmental Impact
Across a Supply Chain

Just like other code snippet across this article, the
code for this case study is online.

Putting together all what we’ve seen so far, we will
study the case of a social network to track the
environmental impact of companies and their
suppliers.

Let’s consider a pizza restaurant willing to track its
environmental impact across its complete supply
chain. Its supply chain can be huge, with many
direct suppliers, each of them having in turn many
suppliers, and so forth. The idea is that each
company in the supply chain will get invited to
provide its own metrics, at its own level, along with
the names of its direct suppliers. This happens
massively in parallel, all around the world, across
potentially hundreds of companies. And it also
happens incrementally, with each supplier deciding
to share their impact when they become able or
willing to. Still, at any time, we would like to
compute the most up-to-date aggregated impact for
the pizza restaurant at the top.

http://jscience.org/api/org/jscience/physics/amount/Amount.html
https://gist.github.com/cyriux/a263efb9c483bcefe72e49c3343ff24e

The impacts we are interested in include the
number of suppliers involved for one pizza, the
total energy consumption and carbon emission
by pizza produced, along with the respective
margins of error for these numbers, and also the
proportion of certified numbers (weighted by
their respective mass in the final product) over the
whole chain.

We could collect all the basic facts, and then
regularly run queries to calculate the aggregated
metrics over the whole dataset each time, a brutal
approach that would require lots of CPU and I/O. Or
we could try to start from what we already had and
then extending it with the latest contributions in
order to update the result. This later approach can
save a lot of processing (by reusing past
calculations, in addition to enabling a
map-reduce-ish approach), but requires each
impact to compose smoothly with any other.

We decide to go the later route. We want to
compose, or ”chain" the impacts together all across
the chain, to compute the full impact for one pizza in
our restaurant at the root of the supply chain.

From what we’ve seen, we need to define a concept
of Environmental Impact that:

● can represent the metrics available for one
supplier in isolation

● can represent the metrics that matter for
the pizza restaurant in terms of impact at
the top of the supply chain

● can compose all supplier’s metrics, and
their supplier’s, into the aggregated
metrics for the pizza restaurant.

Out of the impacts we want, the number of suppliers
is easy to compose: for each supplier (level N), its
supplier count is exactly 1 plus the supplier counts
of all its direct suppliers (level N-1). It’s naturally
additive, in the simplest possible way. The energy
consumption and carbon emissions are naturally
additive too. This suggests the following concept in
code:

public static class

EnvironmentalImpact {

 private final int supplierCount;

 private final

 Amount energyConsumption;

 private final Amount carbonEmission;

 // … equals, hashcode, toString

}

Now in order to compose partial impacts in a way
that is weighted by their respective contribution to
the pizza, we make this value a space vector, with
the “addition” and "multiplication by a scalar”
operations:

public EnvironmentalImpact add

 (EnvironmentalImpact other) {

 return new EnvironmentalImpact(

 supplierCount

 +other.supplierCount,

 energyConsumption

 .add(other.energyConsumption),

 carbonEmission

 .add(other.carbonEmission));

}

public EnvironmentalImpact times

 (double coefficient) {

 return new EnvironmentalImpact(

 supplierCount,

 energyConsumption

 .times(coefficient),

 carbonEmission

 .times(coefficient));

}

Because all these amounts are not that easy to
measure, they come with significant margins of
error, which we’d like to track when it comes to the
end result. This is specially important when
suppliers don’t provide their impact, so we have to
guess it, with some larger margin of error. This
could make the calculations quite complicated, but
we know how to do that in a simple way, using
another tuple that gathers the amount, its unit and
its margin of error:

public static class Amount {

 private final double value;

 private final String unit;

 private final double errorMargin;

 // … equals, hashcode, toString

}

And because we want to add these amounts
weighted by coefficients, we want to make it a
space vector as well, with the addition and
multiplication by a scalar:

public Amount add(Amount other) {

 if (!unit.equals(other.unit))

 throw new

IllegalArgumentException(

 "Amounts must have same units: "

 + unit + " <> " + other.unit);

 return new Amount(

 value + other.value,

 unit,

 errorMargin + other.errorMargin);

}

 public Amount times(

 double coefficient) {

 return new Amount(

 coefficient * value,

 unit,

 coefficient * errorMargin);

}

We’re lucky the error margins are additive too. But
it’s also possible to calculate them for any other
operation than just addition if we wanted to.

Now we’re almost done, but remember we wanted
to track the proportion of certified numbers in the
whole chain. A proportion is typically expressed in
percentage, and it’s a ratio. If we compose one
impact that is 100% certified with two other that are
not at all, then we should end up with a proportion
of certification of 1/3, i.e. 33%. But we want this
proportion to be weighted by the respective mass of
each supplier in the final product. We notice that
this kind of weighted ratio is not additive at all, so
we need to use the trick of making it into a tuple:
(total certification percents, total of the weights in
kg), which we can compose with addition and
multiplication by a scalar.

So we now decorate the Amount class with a
CertifiedAmount class that expands it with this
tuple:

/** An amount that keeps track of its

percentage of certification */

public static class CertifiedAmount {

 private final Amount amount;

 // the total certification score

 private final double score;

 // the total weight of the certified

thing

 private final double weight;

And we update our EnvironmentalImpact class to
use the CertifiedAmount instead of the Amount,
which is easy since it has the exact same methods
names and signatures.

Now let’s use that for 1 pizza, that is made of 1
dough, 0.3 (kg) of tomato sauce and some cooking
in the restaurant.

EnvironmentalImpact cooking =

singleSupplier(

 certified(1, "kWh", 0.3), // energy

 certified(1, "T", 0.25)); // carbon

EnvironmentalImpact dough =

singleSupplier(

 uncertified(5, "kWh", 5.),

 uncertified(0.5, "T", 1.));

EnvironmentalImpact tomatoSauce =

singleSupplier(

 uncertified(3, "kWh", 1.),

 certified(0.2, "T", 0.1));

Which displayed into the console:

EnvironmentalImpact(1 supplier,
 energy: 1.0+/-0.3 kWh (100% certified),
 carbon: 1.0+/-0.25 T (100% certified))
EnvironmentalImpact(1 supplier,
 energy: 5.0+/-5.0 kWh (0% certified),
 carbon: 0.5+/-1.0 T (0% certified))
EnvironmentalImpact(1 supplier,
 energy: 3.0+/-1.0 kWh (0% certified),
 carbon: 0.2+/-0.1 T (100% certified))

From that we can calculate the full impact of the
restaurant by chaining each impact:

EnvironmentalImpact pizza = cooking

 .add(dough)

 .add(tomatoSauce.times(0.3));

If we print the resulting impact into the console, we
get:

EnvironmentalImpact(3 suppliers,
 energy: 6.9+/-5.6 kWh (43% certified),
 carbon: 1.56+/-1.28 T (56% certified))

Which is what we wanted. We can then extend that
approach for many other dimensions of
environmental impact accounting, more details on
accuracy, estimated vs measured vs calculated
values, traceability of the numbers etc., just by
expanding the concepts at each level, while still
keeping it all as nested mathematical structures that
compose perfectly. This approach scales for high
complexity, and for high cardinality as well.

Domain-Driven Design
loves monoids

Domain-Driven Design leans towards a functional
programming style in various aspects. The most
visible is the obvious Value Object tactical pattern,
but in the Blue Book you can also find the patterns
Side-Effect-Free Functions, Closure of Operations,
Declarative Design and Drawing on Established
Formalisms.

It turns out that if you put all of them together, you
end up with something like monoids.

Monoids are everywhere, even in Machine
Learning, with the ubiquitous matrices and tensors,
and with the key trick of composing derivatives
together thanks to the Chain Rule.

Once you’ve used monoids a few times you can’t
but fall in love with them. As a consequence, you try
to make everything into a monoid. For example with
my friend Jeremie Chassaing we’ve discussed
monoids and Event Sourcing, and he kept
investigating how to make Monoidal Event Sourcing
(see his related blog post).

The code for the code snippets in this text are all
online as Github gists: https://gist.github.com/cyriux

Many thanks to my colleague Mathieu Eveillard for
reviewing an early draft, and to Eric Evans, Mathias
Verraes, Yvan Phelizot for the constructive reviews
and feedbacks.

https://en.wikipedia.org/wiki/Chain_rule
https://thinkbeforecoding.com/post/2014/04/11/Monoidal-Event-Sourcing
https://gist.github.com/cyriux

